American Association for Aerosol Research - Abstract Submission

AAAR 31st Annual Conference
October 8-12, 2012
Hyatt Regency Minneapolis
Minneapolis, Minnesota, USA

Abstract View


Top-Down Estimate of Dust Emissions through Integration of MODIS and MISR Aerosol Retrievals with the GEOS-Chem Adjoint Model

Jun Wang, Xiaoguang Xu, Daven Henze, Jing Zeng, BRIAN MELAND, University of Nebraska - Lincoln

     Abstract Number: 670
     Working Group: Source Apportionment

Abstract
Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustrated with a case study in May 2008; the dust emissions in Taklimakan and Gobi deserts are spatially optimized using the GEOS-Chem chemical transport model and its adjoint constrained by aerosol optical depth (AOD) that are derived over the downwind dark-surface region in China from MODIS reflectance with the aerosol single scattering properties consistent with GEOS-chem. The adjoint inverse modeling yields an overall 51% decrease in prior dust emissions estimated by GEOS-Chem over the Taklimakan-Gobi area, with more significant reductions south of the Gobi Desert. The model simulation with optimized dust emissions shows much better agreement with independent observations from MISR AOD and MODIS deep blue AOD over the dust source region and surface PM10 concentrations. The technique of this study can be applied to global multi-sensor remote sensing data for constraining dust emissions at various temporal and spatial scales, and hence improving the quantification of dust effects on climate, air quality, and human health.