American Association for Aerosol Research - Abstract Submission

AAAR 31st Annual Conference
October 8-12, 2012
Hyatt Regency Minneapolis
Minneapolis, Minnesota, USA

Abstract View


Optical Properties of Hematite and Fine Desert Dust Aerosols

HANS MOOSMULLER, Allison Aiken, Mavendra Dubey, Garrett Frey, Bruce Garro, Johann Engelbrecht, Desert Research Institute

     Abstract Number: 736
     Working Group: Aerosols, Clouds, and Climate

Abstract
Globally, aerosol mass emissions and optical depths are dominated by entrained mineral dust. While most minerals occurring in dust aerosols do not absorb solar radiation, some minerals cause significant absorption, thereby lowering the single scatter albedo (SSA) significantly below one, potentially contributing to a warmer and drier atmosphere. Therefore, the optical properties of globally relevant dust aerosols need to be characterized to reduce uncertainties in their radiative forcings. A well-known absorbing component found in dust aerosols is hematite, Fe2O3, which absorbs strongly in the blue-green spectral region, giving some soils, rocks, and dust aerosols their characteristic red color.

We discuss measurements of the optical properties of ~30 dust aerosols, including a pure hematite standard, hematite-containing mineral dust standards ranging from 9-34% hematite by mass, and various dust samples collected from around the world. Samples are suspended from aqueous solution and/or from dry atomization with a cyclone re-suspension chamber yielding the fine fraction relevant for long-range transport. Size distributions were characterized with an optical aerosol spectrometer; absorption and scattering coefficients were measured with a three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm and with an ultraviolet photoacoustic soot spectrometer (PASS-UV) at 375 nm yielding wavelength-dependent mass absorption coefficients (MAC’s), SSA’s, and wavelength dependent Angstrom exponents. Hematite MAC’s are an order of magnitude smaller than those of black carbon (BC) at 405 nm and 532 nm and are largely non-absorbing at 781 nm with SSA’s of 0.49 0.68 and 0.98, respectively.