American Association for Aerosol Research - Abstract Submission

AAAR 32nd Annual Conference
September 30 - October 4, 2013
Oregon Convention Center
Portland, Oregon, USA

Abstract View


Seasonal and Spatial Variability in Chemical Composition of Ambient Ultrafine Particles in the Megacity of Los Angeles

NANCY DAHER, Sina Hasheminassab, Martin Shafer, James Schauer, Constantinos Sioutas, University of Southern California

     Abstract Number: 167
     Working Group: Urban Aerosols

Abstract
Emerging toxicological research has shown that ultrafine particles (UFP, dp < 0.1–0.2 μm) may be more potent than coarse or fine particulate matter. To better characterize quasi-UFP (PM$_(0.25), dp < 0.25 μm), we conducted a year-long sampling campaign at 10 distinct areas in the megacity of Los Angeles, including source, near-freeway, semi-rural receptor and desert-like locations. Average PM$_(0.25) mass concentration ranged from 5.9 to 16.1 μg m$^(−3) across the basin and over different seasons. Wintertime levels were highest at the source site, while lowest at the desert-like site. Conversely, summertime concentrations peaked at the inland receptor locations. Chemical mass reconstruction revealed that quasi-UFP in the basin consisted of 49–64% organic matter, 3–6.4% elemental carbon, 9–15% secondary ions (SI), 0.7–1.3% trace ions, and 5.7–17% crustal material and trace elements, on a yearly average basis. Organic carbon (OC), a major constituent of PM$_(0.25), exhibited greatest concentrations in fall and winter at all sites, with the exception of the inland areas. Atmospheric stability conditions and particle formation favored by condensation of low-volatility organics contributed to these levels. Inland, OC concentrations peaked in summer due to increased PM$_(0.25) advection from upwind sources coupled with secondary organic aerosol formation. Among SI, nitrate peaked at semi-rural Riverside sites, located downwind of strong ammonia sources. Moreover, ionic balance indicated an overall neutral quasi-UFP aerosol, with somewhat lower degree of neutralization at near-freeway sites in winter. Lastly, coefficients of divergence analysis showed that while PM$_(0.25) mass is relatively spatially homogeneous in the basin, some of its components, mainly EC, nitrate and several toxic metals, are unevenly distributed. These results suggest that population exposure to quasi-UFP can substantially vary by season and over short spatial scales in the megacity of Los Angeles.