American Association for Aerosol Research - Abstract Submission

AAAR 36th Annual Conference
October 16 - October 20, 2017
Raleigh Convention Center
Raleigh, North Carolina, USA

Abstract View


Numerical Modelling of Titania Nanoparticles from Flame Synthesis

MARKUS KRAFT, University of Cambridge

     Abstract Number: 24
     Working Group: Invited by Conference Chair

Abstract
Titanium dioxide, also known as titania, nanoparticle is one of the most studied materials for its wide-ranging applications with high commercial importance including photocatalysis and solar cells. The properties of nanoparticles, including size, crystallinity and morphology, have been shown to critically affect the performance of the material in these applications. The main challenge lies in controlling these properties during manufacturing process as required for specific applications. Among various possible routes, flame synthesis is one of the most preferred manufacturing options offering a direct, continuous synthesis with high throughput and versatility, increasingly becoming the standard in industry and laboratory experiments. Despite recent advances in research community, a comprehensive understanding of chemistry and particle formation involved in titania synthesis remains lacking. Computational modelling provides attractive capabilities to study such system with aims to gain further understanding of the underlying chemical and physical mechanism and to optimize the process. Following the success with soot, detailed population balance model has been applied for titania system, with titanium tetraisopropoxide (TTIP) and titanium tetrachloride (TiCl4) as starting precursors. The model, combined with detailed kinetic mechanism developed from quantum chemistry calculation, has been used to describe the particle dynamics in both laboratory and industrial conditions with good predictive power. Coupled with experimental characterizations of lab-scale configurations such as premixed stagnation and diffusion flames, the model can be validated and further refined. Moreover, further insights into complex mechanism of phase transformation and doping of titania nanoparticles in flame can be gained to extend the predictive power of the model. The model can subsequently be used to optimize the synthesis process to produce tinania nanoparticles with specifically tailored properties for use in applications such as photocatalytic water splitting for hydrogen evolution.