10th International Aerosol Conference
September 2 - September 7, 2018
America's Center Convention Complex
St. Louis, Missouri, USA

Abstract View


Coastal Aerosol and Fog Microphysics in Atlantic Canada

RACHEL CHANG, Patrick Duplessis, Sean Hartery, Sonja Bhatia, Michael Wheeler, Annie Marie Macdonald, Dalhousie University

     Abstract Number: 1232
     Working Group: Clouds and Climate

Abstract
Fog reduces visibility, causing delays in transportation by land, sea and air. It is also a safety hazard that results in accidents and sometimes even death. Like cloud droplets, fog droplets form on cloud condensation nuclei, existing aerosol particles in the atmosphere that have the ability to activate into droplets. As such, fog provides a unique, in situ method of studying the process of aerosol activation. The interactions between aerosols and water vapour can determine the formation and persistence of fog, which makes fog forecasting challenging. Current parameterizations suffer notably from unresolved microphysical problems such as neglecting droplet concentration, which leads to large errors in droplet density predictions and therefore visibility. This study presents results from a fog study conducted on the eastern coast of Canada in Nova Scotia during the early summer of 2016. Observations of aerosol size distributions and chemical composition were conducted behind a ground-based counter flow virtual impactor, allowing the droplet residuals to be measured directly. Fog droplet size distributions, visibility and other meteorological variables were also measured at the same time. Aerosol and droplet microphysical parameters will be presented including the influence of air mass history on visibility. Preliminary results show that aerosol growth may be contributing to the dissipation of fog under some conditions, suggesting that despite the importance of dynamics on fog formation and dissipation, aerosols can also play an important role in the life cycle of fog.