American Association for Aerosol Research - Abstract Submission

AAAR 37th Annual Conference
October 14 - October 18, 2019
Oregon Convention Center
Portland, Oregon, USA

Abstract View


Multi-year Observations of Black Carbon and Brown Carbon in Bogota, Colombia: Relation to Biomass Burning Tracers and Number of Fires in Northern South America

JUAN MANUEL RINCÓN, Amy P. Sullivan, Juan Felipe Mendez, Ricardo Morales Betancourt, Universidad de los Andes

     Abstract Number: 808
     Working Group: Carbonaceous Aerosol

Abstract
Biomass burning pollution sources can produce regional and global impacts on air quality. South America is one of largest contributors to biomass burning emissions (BB) globally. After Amazonia, BB emissions from the grassland plains of Northern South America (NSA), where both wildfires and agricultural burns occur regularly, are the most significant. The BB season in NSA is characterized by a different seasonality compared to that of Amazonia, with numerous fires occurring between January and March. In this work, we report 3 years of continuous equivalent Black Carbon (eBC) and Brown Carbon (BrC) measurements from an Aethalometer AE33-7. This data is used to identify and quantify the contribution of biomass burning from NSA to Bogota, Colombia's. The measurement site is located upwind of Bogota, at a hill-top 500 meters above the plateau where the city is located. Additionally, PM2.5 off-line data using a low-vol sampler and 37 mm quartz filters, has been collected during two three-month long field campaigns. The first campaign was carried out from January to March 2018 (high BB emissions in NSA) and the second one between July and August 2018 (low BB emissions in NSA). The filter samples were analyzed in Colorado State University quantifying biomass burning tracers such as Levoglucosan and potassium ion. OC/EC data was also retrieved from the filter samples. MODIS Active Fire Data and HYSPLIT back‐trajectories were used to support the identification of potential biomass burning plumes transported to the city during the fires season. We analyzed the relationship between BrC, OC, Potassium ion, and levoglucosan to identify signals of regional transport of BB aerosols. We found a maximum BB contribution of 10% to light-absorbing aerosols during the high number of fires season and a 1% BB contribution during the low number of fires season. Our results indicate potential biomass burning transport events from wildfires were observed during the months of January and April. In addition, we identified potential source regions, most of them located in the Orinoco basin, as most of the fires were found in this region.