PM_{2.5} Suppression of Ozone Formation at High Mass Loading

Jim Schwab¹, Jie Zhang¹, Alexandra Catena¹, Janie Schwab¹, Matthew Ninneman², Junfeng Wang³, and Amanda Teora²

¹Atmospheric Sciences Research Center, University at Albany, SUNY

²New York State Department of Environmental Conservation, Air Resources ³Nanjing University Information Science and Technology

Acknowledgements

Support: NYSERDA contract 48971.

Statement of Problem

- It is quite common for ozone and PM_{2.5} pollution episodes to co-occur during summer months and both pollutants create problems for regulators in areas subject to air quality problems.
- Understanding the relationship between these two pollutants on poor air quality days can help develop strategies for prevention and mitigation of these problems.
- We selected twelve major cities in the Eastern U.S. and analyzed the relationship between summertime maximum 8-hour average ozone (MDA8 O₃) and the daily average PM_{2.5} (DA24 PM_{2.5}).

PM_{2.5} Suppression of Ozone Formation

- At low $PM_{2.5}$ loading the relationship between O_3 and $PM_{2.5}$ is well described by a monotonic near linear increasing function.
- At very high PM concentrations (like those observed in China, India, Africa, and elsewhere) there is a leveling off or even decreasing dependence of O₃ on PM_{2.5}.
- This flat or declining relationship has been partly attributed to the scavenging of HO₂ and/or NO₃ by high concentrations of PM that inhibits the photochemical production of O₃; and/or reduced photolysis rates due to the radiation decrease caused by the high PM.

How to describe this suppression?

- Work from our group (Zhang et al., 2022) has used a non-linear polynomial function to describe the relationship between O_3 and $PM_{2.5}$ for NYC based on surface measurements. This relationship consists of:
 - A linear term reflecting the O₃/PM_{2.5} co-occurrence;
 - A negative power function term reflecting the suppression of O₃ formation by PM_{2.5}; and
 - A constant term.

Non-linear fitting expression

- $O_3 = aPM_{2.5} b(PM_{2.5})^{5/3} + c$
 - a is the slope of the linear part of the relationship
 - b is the power function coefficient, or the "suppression factor"
 - c is the constant term

Ozone sensitivity regime

- Regions are often described as NO_x-limited or VOC-limited with respect to ozone production depending on which pollutant group is the limiting reagent.
- Large urban areas have historically been NO_x-limited due to large anthropogenic emissions of VOCs. Conversely, more rural regions have historically been VOC-limited.
- Reductions in VOC emissions have caused many urban areas (like NYC) to trend more toward VOC-limited (or into a transition zone between the two limiting cases).
- The PM_{2.5} suppression factor can help indicate the ozone formation regime and can be compared the commonly used indicator from satellite column measurements of the HCHO to NO₂ ratio. (OMI and TROPOMI)

Data Analysis

Locations for the analysis of MDA8 O₃ and DA24 PM_{2.5} data from 2004-2019

Plots and Fitted relationships for these sites

Evolution of PM_{2.5} Suppression Factors

Time Period	IS52 (Bronx)	Queens College	EP, Long Island	Holtsville, Ll	New Haven, CT
2004-2008	0.08	0.07	n/a	n/a	0.08
2009-2013	0.09	0.10	0.19	0.11	0.13
2014-2019	0.23	0.30	0.27	0.25	0.27

- The increase in PM_{2.5} suppression factor over this time period is consistent with the increase in HCHO/NO₂ ratio, which is used to indicate the O₃-sensitivity regime.
- The increased HCHO/NO₂ ratio (and therefore the increased $PM_{2.5}$ suppression factor) represents a shift of the NYC area from the VOC-limited to the NO_x -limited regime.

Extend the analysis to 12 Major Eastern U.S. cities

Clear trend toward increasing suppression factors across the domain

Combining satellite derived HCHO/NO₂ ratio and PM_{2.5} Suppression Factors

Conclusions (Take Home Points)

- The O₃ to PM_{2.5} relationship at high PM has a non-linear rollover that is related to PM_{2.5} suppression of ozone formation (maybe due the HO₂ uptake by aerosols?).
- The non-linear suppression factor has increased over time possibly due to increasing organic carbon in the PM.
- This is consistent with the trend in the HCHO/NO₂ indicator ratio for ozone formation regime.
- This PM_{2.5} suppression factor offers an alternative, but largely confirming measure of ozone formation regime.

Thank you!

Back Up Slides

• The time series of the annual summertime average DA24 PM_{2.5} in NYC urban sites and downwind sites for each subperiod.

HCHO/NO₂ satellite derived ratios for cities used in the study.

