Analysis of Significant Weather Event - Inversion, Dust, Wildfire Smoke - Impact on Indoor and Outdoor PM_{2.5} Levels Measured Using a Network of Low-Cost Air Quality Sensors

Tristalee Mangin¹, Dillon Tang¹, Zachary Palmer², Darrah Sleeth², Kerry Kelly¹ ¹University of Utah Department of Chemical Engineering, ²University of Utah Department of Family & Preventive Medicine

Introduction

- Individuals typically spend more than 80% of their time indoors, and Indoor air quality (IAQ) is critical for human health and worker productivity. The World Health Organization's (WHO) 24-hour guideline for indoor PM_{2.5} is 15 μ g/m³ [1].
- Low-cost sensor technology can screen for IAQ problems, increase the spatial resolution of IAQ measurements, assist building managers, and engage the local community.

Objectives

- Utilize low-cost sensor measurements to determine if IAQ is impacted during pollution events – inversion, dust, and wildfire smoke.
- Communicate real-time IAQ measurements with facility management.
- Analyze HVAC performance, particularly during these pollution events.
- Develop HVAC operation recommendations for these pollution events – inversion, dust, and wildfire smoke – if HVAC operations negatively affect IAQ.

• Since November 2022, 21 sensors deployed across the University of Utah campus.

- 17 indoor locations
- 2 outdoor locations (2 sensor nodes collocated at each)

• The sensor nodes measure:

- Particulate matter (PM)
- \circ Carbon dioxide (CO₂)
- Temperature
- Relative humidity

• Hourly averaged measurements are communicated wirelessly to an online dashboard that facility managers can access in real-time.

• Raw PM measurements corrected using a U.S. wide correction [2][3].

Pollution Event Identification

Inversion event identification

 \circ Three or more consecutive daily valley heat deficit values > 4.04 MJ/m² [4].

- Dust event identification • Utah Division of Air Quality $PM_{10} > 100 \ \mu g/m^3$ and wind speeds > 5 m/s [5].
- Wildfire smoke event identification
 - NASA WorldView satellite images of the smoke plume and the aerosol optical depth (AOD) [6].

Wildfire Smoke Event NASA Worldview Satellite Photo with AOD Layer

Inversion Results

- Four inversion events identified between November 2022 and February 2023, lasting an average of 3.5 days.
- WHO indoor 24-hour guideline exceedances: \circ 110 hours from 7 indoor locations over 15 μ g/m³ hourly average. \circ 4 days from 3 indoor locations over 15 μ g/m³ daily average.
- Low correlation (R2) of 0.32 averaged across indoor locations.

Dust Results

- Eleven dust events identified between November 2022 and August 2023, lasting an average of 5.8 hours.
- WHO indoor 24-hour guideline exceedances: \circ 7 hours from 4 indoor locations over 15 μ g/m³ hourly average. • No indoor locations over the daily average.
- Low-moderate correlation (R2) of 0.44 averaged across indoor locations.

Wildfire Smoke Results

- Two wildfire smoke events occurred between November 2022 and August 2023, lasting an average of 3.5 days.
- WHO indoor 24-hour guideline exceedances: \circ 353 hours from 12 indoor locations over 15 μ g/m³ hourly average. \circ 13 days from 9 indoor locations over 15 μ g/m³ daily average.
- Moderate correlation (R2) of 0.68 averaged across indoor locations.
- Highest maximum PM_{2.5} concentration averages for 13 of the 17 indoor locations.

Conclusion

Wildfire smoke had the biggest impact on IAQ of the three pollution events. Wildfire smoke had the highest indoor/outdoor correlation, the most indoor locations with the highest maximum PM_{2.5} concentration, and the most hourly and daily average PM_{2.5} measurements that exceeded the WHO indoor 24-hour guideline.

Future Work

- Compare differences in PM_{2.5} levels between HVAC system types (specifically DOAS and VAV systems) during pollution events.
- Utilize building management software to obtain historical air handler unit information to determine if PM anomalies are due to HVAC changes.
- Determine a correction factor for PM measurements from indoor sensors.

Acknowledgments

This material is based upon work supported by the Global Change & Sustainability Center, the Sustainable Campus Initiative Fund, and the Wilkes Center for Climate Science & Policy at the University of Utah.

Dr. Kerry Kelly has an interest in the company Tetrad: Sensor Network Solutions, LCC, which commercializes solutions for environmental monitoring.

Indoor/Ou Average f	
Indoor 1 - Indoor 2 - Indoor 3 - Indoor 4 - Indoor 5 - Indoor 6 - Indoor 6 - Indoor 7* Indoor 7* Indoor 7* Indoor 10 - Indoor 10 - Indoor 11 - Indoor 13 - Indoor 14 - Indoor 15 - Indoor 16 - Indoor 17 -	
0.0	

