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Motivation

• It is important to understand soot nucleation in flames

Soot emissions from combustion sources pose 

significant hazards to human health and the environment 

and are a substantial contributor to climate change
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Diffusion flames’ canonical configurations

Co-flow diffusion Flame

Air Fuel Air

Fuel

Air

Counterflow diffusion Flame (CF)

Santoro et al, CNF, 1981

• Can’t decouple pyrolysis from oxidation

• Axial symmetry prevents the sampling 
of products with spatial resolution

• Buoyancy affects the temperature time 
history in a complicated manner 

• 1D easy to model structure 

• Buoyant instabilities at low strain rates

• Experimental limitation on flame thickness

• Inaccessibility to intrusive dilution probes

Wolfhard and Parker, PPS 1949

• Enclosure is essential for stability

• Not suitable for sampling techniques

• Can be stabilized only at low HAB

Wolfhard and Parker Flame 

Pandya and Weinberg, Proc. R. Soc. A, 1964
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PMLF idea and 2D-CFD model 

• Slit width and horizontal position

• Maximum stability

• Minimum interaction with the plate

• Nozzle size

• Prevent dilution by nitrogen shielding

• Vertical position of the plate 

• The thickest flame with best stability

• Adaptive mesh refinement is utilized

• Mesh independence is achieved for limit of variation within the cell 

of the values (G=1%) and  their gradient (C=2%)

• USC and ABF chemical kinetic models are used

Wang, et al. "USC Mech Version II, 2007.Appel et al., Combust. Flame, 2000 .

• Plug flow inlet (0.2 m/s)

• Pressure outlet (Bernoulli 

approximation)

• Adiabatic wall boundary for 

the plate



5Flame, Aerosol, and Nano 

Technologies (FANTastic) 

Laboratory
Burner design and PMLF structure

• Tmaxis in the oxidizer stream

• Strain rate decreases as the Hight Above 

the Burner (HAB) increases

• Thickness at HAB=50 mm (≈ 12𝑚𝑚) is 3 

times thicker than counterflow flames 

investigated in the literature 

• Flame does not flicker (the standard 

deviation of displacement is less 

than 0.3mm even when a dilution sampling 

probe is being used)

Fuel

Oxidizer

N2

N2

0.250 C2H4+ 0.750 N2 0.172 O2+ 0.828 N2

Zst= 0.183 

Carbone et al. Combust. Flame, 2015.

The Gas Mixing Layer Interface (GMLI) is 

the surface composed of all streamlines 

separating the Fuel from the Oxidizer jets
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Self-similarity of PML and CF

O2+N2

GSP

Fuel + N2

Flame

PMLI-GMLI

0.5dT

• Capillary sampling followed by GC/MS analyses 

x
i/
x

i,
m

a
x

 
an

d
 
=

[T
-T

m
in

]/
[T

m
a
x
-T

m
in

]

• A diffusion self-similarity exists between the horizontal cross-sections 

of the PML and CF at the same stoichiometric mixture fraction

• The flame maintains stability when examined using capillary 

sampling or thermocouple

PSP

The Particle Mixing Layer Interface (PMLI) 

differ from the GMLI because of the 

thermophoretic velocity 𝑣𝑡ℎ = −0.554𝑣
∇𝑇

𝑇
, 

similar to the Particles Stagnation Plane in CF

The GMLI is the equivalent to the Gas 

Stagnation Plane (GSP) in CF

𝛿𝑇𝑃𝑀𝐿@𝐻𝐴𝐵50 = 12𝑚𝑚
𝛿𝑇𝐶𝐹@𝑎=52𝑆 = 4.4 𝑚𝑚
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HR-DMA Measurements’ Setup

DAQ

High Voltage 

power supply

Excess flow to 

vacuum pump

(25lpm)

FCE 

DMA

vacuum 

pump

30lpm 

pure N2 

Filter

𝑄𝑠ℎ = 135𝑙𝑝𝑚

𝑄𝐷𝑀𝐴 = 5𝑙𝑝𝑚

-600 pa

pressure 

transmitter

Flame

PML

Kr 

PMLI

Tmax

Kumar et al., Atmosph. Env. , 2008

Carbone et al., AST, 2016
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• The measured Size Distribution Function (SDF) is approximately independent of dilution ratio at all HABs

DR=4400

DR=6900
Positive Negative

HAB=50mm
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Orifice size: 100µm (DR=4400)

Size Distribution, Phase 1
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• Soot nucleation occurs in the proximity of the maximum temperature and is followed by growth
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Gleason et al, 2021

Carbone et al, 2023

𝐷𝐷𝑀𝐴, 𝑛𝑚

• Cooling the flame products can result in secondary particle nucleation at temperatures below 1400K 
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Orifice size: 100µm (DR=4400)
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Conclusion

▪ The horizontal thickness of the Planar Mixing Layer Flame (PMLF) increases at increasing 

Heights Above the Burner (HAB) 

▪ The PMLF remains very stable while its sampling is performed with an intrusive horizontal 

tube dilution probe (as well as during capillary sampling, or fine thermocouple 

measurements). 

▪ The PMLF has a boundary layer diffusion self similar structure equivalent to that of a one-

dimensional Counterflow Flame (CF) with the same stochiometric mixture fraction, but it 

can be is at least 3 times thicker compare to CF experiments.

▪ Dilution sampling followed by HR-DMA quantifies the Size Distribution Function (SDF) of 

soot nucleating in the proximity of the hottest PMLF oxidation layer.

▪ Nucleation is followed by growth as soot is advected away from the PMLF oxidation layer.

▪ The SDF re-shift toward smaller size as the local temperature drops below 1450K so that 

HR-DMA confirm a low temperature nucleation. 
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