

PM_{2.5} Source Changes for 2010-2019 in NY and NJ by Dispersion Normalized PMF Philip K. Hopke,^{1,2} Yunle Chen,¹ David Q. Rich¹

1. University of Rochester School of Medicine and Dentistry, Rochester, NY 2. Clarkson University, Potsdam, NY

I. Background

Since Clean Air Act regulation in the 1970s, various efforts have been made in the United States to control ambient PM and improve air quality. In NY/NJ State, some major changes made to improve air quality in the past decade include but are not limited to the phasing out of all coal-fired power plants, a forced abandonment of No 6 oil for large building heating, a forced switch to ultra-low sulfur marine fuels, the introduction of Tier 3 light-duty vehicles, etc.

Receptor models like positive matric factorization (PMF) have been widely used in atmospheric studies for source identification and quantification. Recently, dispersion normalized PMF (DN-PMF) was developed to reduce the influence of meteorological dispersion on source resolution in PMF analysis.

Objectives: This presentation investigated the PM_{2.5} source trends at 11 sites in NY and NJ states for the 2010-2019 period, corrected for meteorological dispersion through DN-PMF, and assessed the effectiveness of policy implementations.

IV. Changing Trends over the Decade

Spark-ignition vehicle emission (GAS)

- Traffic-related
- A breakpoint occurring in mid-2017 was resolved for the NYC area and Upstate urban sites after which GAS started to decrease

III. Overview of Source Apportionment Results

Common anthropogenic sources resolved 12 at all sites: **Figure 6** NYS LDV registered in 2017-2019 with model year before 2017 (red bar), after 2017 (blue bar), and

- Secondary sulfate (SS)
- Secondary nitrate (SN)
- Spark-ignition vehicle emission (GAS)
- Diesel vehicle emission (DIE)
- Road dust (RD)
- Biomass burning (BB)
- OP-rich aerosol (OP)

Only at NYC metro area sites:

- Fresh sea salt (FRS)
- Aged sea salt (AGS)
- Residual oil (RO)

Only at upstate NY sites:

Road salt (RS)

Only at Buffalo site:

Industrial source (IN)

Tier 3 vehicle estimated penetration rate (black line and marker).

Secondary Sulfate (SS) and Secondary Nitrate (SN)

- Secondary in nature
- Overall decreasing, but both increased in the 2018-2019 biennial compared to the prior one

Biomass Burning (BB) and OP-Rich (OP)

- Both can be traced back to Southeastern U.S.
- BB showed the highest concentrations in winter for urban sites,

Figure 4 Profiles of background sites (left), Upstate NY sites (middle), and NYC metro sites (right)

Table 1 Summary of average source contributions (µg/m³)

Site	Period	SS	SN	GAS	DIE	RD	BB	OP	RO	IN	RS	FRS	AGS	PM _{2.5}
BRO	01/2010-06/2010 02/2014-12/2019	2.85	1.55	1.85	0.82	0.61	0.36	0.91	0.49	0	0	0.08	0.27	10.34
MAN	01/2010-12/2019	2.09	1.02	1.12	0.54	0.07	1.00	0.77	0.92	0	0	0.03	0.54	8.99
QUE	01/2010-12/2019	2.20	1.25	1.51	0.48	0.15	0.51	0.38	0.17	0	0	0.11	0.20	7.68
ELI	01/2010-12/2019	2.46	1.19	3.04	0.28	0.28	0.32	0.26	0.95	0	0	0.09	0.38	9.97
NEW	01/2012-12/2019	1.36	1.19	2.39	0.10	0.26	0.19	0.93	0.82	0	0	0.08	0.32	8.34
ALB	01/2010-12/2019	1.56	0.94	2.55	0.68	0.14	0.34	1.06	0	0	0.11	0	0	7.81
BUF	01/2010-12/2019	1.98	1.03	1.84	0.36	0.23	0.55	1.07	0	0.69	0.05	0	0	8.25
ROC	01/2010-12/2019	1.99	1.09	1.61	0.62	0.23	0.56	0.43	0	0	0.10	0	0	7.25
CHE	01/2010-12/2019	1.83	0.57	1.37	0.49	0.32	0.24	0.09	0.85	0	0	0	0.27	6.85
PIN	01/2010-12/2019	1.37	0.57	1.02	0.32	0.17	0.40	1.41	0	0	0	0	0.20	6.00
WHF	01/2011-12/2019	0.75	0.11	0.47	80.0	0.38	0.33	0.95	0	0	0	0	0.22	3.90

attributed to local domestic heating

Figure 8 Seasonal CWT trajectory for BB (left) and OP (right) at WHF site

Acknowledgement

This work was supported by the New York State Energy Research and Development Authority (NYSERDA) Contract #156226.