

LPG intervention vs Ambient PM_{2 5}

Project Aims:

- Determine the ambient $PM_{2.5}$ concentration response to a clean cookstove intervention.
- Determine if and how the chemical composition of ambient air PM_{2.5} changes as residents increase use of LPG stoves.

The Clean Cookstove Intervention

Bonnie Young

Does It Really Take A Village? Ambient Air Quality Response to Clean Cookstove Intervention

- **Location**: Eastern Rwanda (Ndego)
- Size: 400/~3,000 homes will receive LPG
- Monitor: AMOD (Wendt et al. 2022)
- In country partner: MeshPower
- Traditional cooking often takes place in poorly ventilated spaces with inefficient combustion chambers, often leading to dangerously high levels of PM_{2.5}.
- Household air quality can only improve as much as the ambient, due to a lack of air filtration systems in homes.
- At what level of LPG use are meaningful ambient air quality goals achieved?

PM_{2.5} Response

Conclusions

• Early trends suggest the LPG cookstove intervention may produce a significant effect on ambient PM_{2.5} concentrations during peak cooking hours. • Chemical Analysis ongoing.

Acknowledgments

- and analysis.
- Funding was provided by the NIH (R01ES029995).

Ky Tanner Advisor: John Volckens

Thank you to everyone involved with the SHEAR Study at CSU and in Rwanda for help with study design, data collection,