

Particle Measurement & Technology Laboratory

UNIVERSITY

OF MIAMI

Mapping the Performance of a Versatile Water-based Condensation Particle Counter (vWCPC) with Numerical Simulation and Experimental Study

Pacific Northwest WEIXING HAO, Fan Mei, Susanne Hering, Steven Spielman, Beat Schmid, Jason Tomlinson, Yang Wang
Email: weixinghao@miami.edu
Advisor: Dr. Yang Wang
Chemical, Environmental and Materials Engineering
University of Miami

Introduction

- Accurate airborne aerosol measurements are needed in different altitudes and diverse climate regimes.
- Identify a potential CPC that avoids the health and safety concerns of butanol-based CPCs.
- Characterize the versatile water CPC at reduced pressures for atmospheric airborne research.

UNIVERSITY OF MIAMI

https://tsi.com/products/particle-counters-and-detectors/condensation-particle-counters/versatile-water-based-condensation-particle-counter-3789/.

Introduction

- Numerical modeling is advantageous in studying the vWCPC performance with various operating parameters.
- Our previous study shows that **COMSOL** and analytical **Graetz solution** show excellent agreement.

UNIVERSITY OF MIAMI

Hao, et al. (2021). Optimizing the activation efficiency of sub-3 nm particles in a laminar flow condensation particle counter: Model simulation. J. Aerosol Sci.

Objectives

- Determine particle activation and droplet growth in simulation:
 - $\,\circ\,$ saturation ratio profile
 - $\circ~$ activation efficiency
 - \circ particle growth
- Investigate the effects of operational factors on particle activation and droplet growth:
 - \circ operating temperature
 - inlet pressures (30 101 kPa)
 - o geometry
- Compare the detection efficiency of laboratory experiments and modeling work.

Simulation plan

The default settings of vWCPC:

- $T_{\rm con}$, $T_{\rm ini}$, and $T_{\rm mod}$ of 30, 59, and 10 °C.
- The aerosol flow rate is 0.3 L min⁻¹.
- The relative humidity (RH) of inlet flow is set at 20%.
- The water vapor is saturated at the wall.
- The inlet pressure (P) is 101 kPa (1 atm).

 T_{con} : Conditioner temperature T_{ini} : Initiator temperature T_{mod} : Moderator temperature T_{mid} : Temperature midpoint D: Tube diameter L_{ini} : Initiator length

Task	$T_{\rm con}$ (°C) – $T_{\rm ini}$ (°C)	T_{mod} (°C)	$T_{\rm mid}$ (°C)	P (kPa)	<i>D</i> (mm)	L _{ini} (mm)
1	(25, 30, 35) – (55, 60, 65)	10	_	101	6.3	30
2	24-56, 27-59, 30-62	10	40, 43, 46	30–101	6.3	30
3	27-59, 30-59	10	_	30-101	6.3	30
4	30–59	10	—	51, 101	4, 5, 6.3, 8	30
5	30–59	10	_	51, 101	6.3	10, 20, 30, 40, 50

Theory of particle activation $S = \frac{p}{p_{s}}$ $D_{p,kel} = \frac{4\sigma v_{m}}{kT \ln (S)}$ Theory of droplet growth $\frac{dD_{p}}{dt} = \frac{4D_{v}'M}{\rho} \frac{(C - C_{d})}{D_{p}} \cdot D_{p,kel,0}$ $D_{p,kel,5}$ $D_$

- $D_{p,kel,0}$: smallest size of particle that can be activated
- $D_{p,kel,50}$: size of particle that has a 50% activation efficiency

 D_{d} : final growth droplet size

- **Improved** particle activation can be achieved by **Iowering** the temperature midpoint.
- By lowering the temperature midpoint by 6 °C, *D*_d becomes smaller **by 14%**, and *D*_d decreases **by 45%** with reduced pressure.

- **2 3% greater** $D_{p,kel,0}$ and $D_{p,kel,50}$ under reduced inlet pressures.
- A smaller final droplet size (~ 40 % reduction) was observed at reduced pressure of 30 kPa.
- Lower inlet pressure, the final droplet size **reduced more** notably.

UNIVERSITY

- No noticeable changes in particle activation.
- An increased tube diameter *D* and initiator length *L*_{ini} improve the performance of particle growth.

Experimental measurement of <u>detection efficiency</u> agrees well with simulation results

- The counting efficiency slightly **decreases** with the decrease in the operating pressure.
- The cut-off size in both experimental and simulation results is in the range of **5 7 nm**.

Mei, et al. (2021). Simulation-aided characterization of a versatile water-based condensation particle counter for atmospheric airborne research. Atmospheric Measurement Techniques.

- This study guides further optimization of the performance of vWCPCs for accurate detection of particles and **atmospheric aerosol measurement applications**.
- Temperature effects
 - o **Increased** temperature difference ΔT improved vWCPC particle activation and droplet growth.
 - o **Decreased** temperature midpoint T_{mid} improved vWCPC particle activation, but not for growth.
- Pressure effects
 - 40 % reduction in final droplet size was obtained at a reduced pressure of 30 kPa compared to standard pressure (101 kPa).
- Geometry effects
 - **Increased** tube diameter improved the particle growth.
 - o Increased initiator length limited impacts on improving vWCPC performance.
- Experimental measurement of detection efficiency agrees well with simulation results.

Thank you! Q&A

PNNL is operated by Battelle for the U.S. Department of Energy

Technology Laboratory

UNIVERSITY OF MIAMI

Hao, et al. (2023) Mapping the performance of a versatile water-based condensation particle counter (vWCPC) with numerical simulation and experimental study. Atmospheric Measurement Techniques.

allowed particle growth time

$$t_{\rm g}\sim D^2 L^*/Q_{\rm v},$$

homogeneous nucleation rate (I)

$$I = 2 \times \left[\frac{p}{\left(2\pi m kT\right)^{1/2}}\right] \times \left(nv_{\rm m}^{2/3}\right) \times \left[\frac{\sigma v_{\rm m}^{2/3}}{kT}\right]^{1/2} \times \exp\left[-\frac{16\pi\sigma^3 v_{\rm m}^2}{3\left(kT\right)^3\left(\ln S\right)^2}\right]$$

