

AAAR 2024

Ammonium-Induced Stabilization of Imidazoles in the Particle Phase

Malsha Amugoda

Department of Chemistry UC Riverside

Malsha Amugoda, James F. Davies

Brown Carbon and their Atmospheric Evolution

Lim et al., Atmos. Chem. Phys. 2010, 10 (21), 10521–10539.

Particulate Imidazoles: Primary emission and Secondary formation

Light-absorbing, N-containing aromatic heterocyclic organic compounds

He et al., *Science of The Total Environment*, vol. 806, **2022**, p. 150804.

Understanding the Evaporation of Imidazoles

Particle levitation in linear quadrupole electrodynamic balance coupled with Mie resonance spectroscopy to characterize the evolving size and RI under controlled RH and temperature

Evaporation of Binary Particles Containing MeIM and Water

The pure component vapor pressures are calculated using a simple evaporation model incorporating the refractive index data to estimate the mole fraction of organic

$$\frac{da^2}{dt} = \frac{2M_{org}D_{org}}{\rho_a RT}\gamma_{org}p_{org}^{\circ} \times \left[\frac{(1-x_{org})M_w}{M_{org}} + x_{org}\right]$$

The vapor pressure of MeIM varies a small amount with RH, indicating that the assumption of ideality is not fully supported

Evaporation of MeIM w/ $(NH_4)_2SO_4$ at 0% RH

- Evaporation occurs over two distinct timescales
- ➤ A significant fraction of organic remains in the particle when the slow region occurs
- ➢ Modeling of the evaporation:

Component	X_{org}	P _{sat} / Pa
MeIM (fast component)	0.29	0.43
AS	0.15	
MeIM (slow component)	0.56	0.0054

Evaporation of MeIM w/ NH₄Cl at 0% RH

The evaporation of $MeIM + NH_4Cl(A)X_{org} = 0.49$, (B) $X_{org} = 0.85$, under dry RH

- Slow size change over tens of thousands of seconds
- Starting mole fraction controls the size change
- > P_{sat} of fast region 0.2 Pa >> P_{sat} of slow region 0.0001 Pa
- IM and ICA mixtures also show slow down of evaporation
- Slowing effects was not observed in 4MI / NaCl and 4MI / K₂SO₄ mixtures

How does *NH*⁺₄ Slow Down the Evaporation of MeIM?

Hygroscopicity and Optical Properties of of MeIM and NH₄Cl Versus MeIM and HCl

$$MeIM + NH_4Cl \Leftrightarrow MeIMH^+Cl^- + NH_3$$

$$NH_{3(g)}$$

$$MeIM + HCl \Leftrightarrow MeIMH^+Cl^-$$

- > Degassing of ammonia drives the forward reaction
- Ammonium depletion is responsible for the observed behavior
- ➢ MeIMH⁺Cl[−] can act as an **ionic liquid**, and particles remain spherical and amorphous across all RH conditions

Hygroscopicity and Optical Properties of of MeIM and $(NH_4)_2SO_4$ Versus MeIM and H_2SO_4

(MeIMH⁺)₂ SO₄²⁻ does not act as an **ionic liquid**, and particles solidify to a non-spherical morphology at low RH

Summary and Conclusions

- While the volatility of pure imidazoles results in rapid evaporation from the particle phase, the presence of ammonium ions can stabilize them in the particle phase via acid/base chemistry and ammonium depletion.
- Given the formation mechanism of imidazoles in the atmosphere, it is highly likely that an abundance of ammonium is present in aerosols that exhibit a high mass loading of particle phase imidazoles
- 4-methylimidazole can form an ionic liquid with chloride ions following protonation either by a strong acid or ammonium. These particles remain amorphous across the full RH range.

 $MeIM + HCl \rightleftharpoons MeIMH^+Cl^ MeIM + NH_4Cl \hookrightarrow MeIMH^+Cl^- + NH_3$

Acknowledgements

Principal Investigator

• Prof. James F. Davies

Group Members

- Bilal Shokoor
- Craig Sheldon
- Erin Bowey
- Jack Choczynski
- Prakriti Singh
- Stephanie Salas

Funding

• NSF Division of Atmospheric and Geospace Sciences (2144005)

For further information and contact:

Email: abinu002@ucr.edu **Web**: www.allaboutaerosol.com

