

A Comprehensive Analysis of New Particle Formation Across the Northwest Atlantic: Analysis of ACTIVATE Airborne Data

Soodabeh Namdari¹, Taiwo Ajayi¹, Yonghoon Choi², Ewan C. Crosbie^{2,3}, Joshua P. DiGangi², Glenn S. Diskin², Simon Kirschler^{4,5}, Hongyu Liu⁷, John B. Nowak², Michael A. Shook², Cassidy Soloff¹, Kenneth L. Thornhill^{2,4}, Christiane Voigt^{5,6}, Edward L. Winstead^{2,3}, Bo Zhang⁶, Luke D. Ziemba², and Armin Sorooshian¹

¹University of Arizona, ²NASA Langley Research Center, ³Analytical Mechanics Associates, ⁴DLR, ⁵University Mainz ⁶National Institute of Aerospace, Hampton

23 Oct 2024 AAAR 2024

Funding support from NASA

Contact: snamdari@arizona.edu

Key Question and Motivation

- Motivation: New particle formation (NPF) is crucial for understanding aerosol number and size distributions, and cloud formation owing to influence on the CCN budget.
- Driving question: What are the spatial, vertical, and seasonal characteristics of NPF over the northwest Atlantic?

- What promotes NPF?
- High precursor vapor levels (e.g., ammonia, sulfuric acid, organics) and water
- Low aerosol surface area
- Enhanced incident solar radiation

Relevant recent results over Atlantic Ocean (Zheng et al., 2021; Corral et al., 2022):

- NPF occurs in the upper marine boundary layer after cold fronts.
- Cold Air Outbreaks promote NPF offshore the U.S. East Coast.
- NPF attributed to cold temperatures, low aerosol surface area, and high actinic fluxes in broken cloud fields.

There is a need for more studies over marine regions

ACTIVATE Strategy

ACTIVATE

•NASA's Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) [2020-2022]

•Two spatially coordinated aircraft sampling variables relevant to aerosol-cloud interactions

•Aimed to maximize data volume (179 total research flights)

•Publicly available dataset:

Winter 2020 (14 February–12 March)

Winter 2021 (27 January-2 April)

Summer 2021 (13 May-30 June)

Summer 2022 (3 May-18 June)

Summer 2020 (13 August-30 September)

Winter 2021-2022 (30 November-29 March)

https://doi.org/10.5067/SUBORBITAL/ACTIVATE/DATA001

- Ensembles: Facilitate easier data analysis by conducting flights in a routine and prescriptive manner where data can be easily combined and aggregated based on factors such as altitude relative to cloud and MBL top
- Both aircraft within ~5 min and ~6 km for 73% of the time (e.g., Schlosser et al., 2024)
- This Study: Focused on in situ data just from the lower flying HU-25 Falcon

VATE

ACTIVATE

Payload: Falcon In-Situ Measurements

Most relevant instruments used

 Two condensation particle counters (> 3 nm and > 10 nm) that measure total particle concentration (N)

Indicator of NPF

- Ratio of N₃:N₁₀
- Ranges from 1.0 (no clear NPF signature) to higher values (i.e., particles between 3-10 nm)
- Caution: High ratios don't necessarily indicate NPF occurred exactly at the point of measurement

1

ACTIVATE

Dataset	Relevant Variable(s)									
Applanix navigational data	Basic navigational and motion data									
Diode Laser Hygrometer	Water vapor measurements									
PICARRO G2401-m	CO2, CH4, CO measurements									
2B Technologies Inc. O3 monitor	Ozone (O ₃) measurements									
Turbulent Air Motion Measurement System	3D winds, temperature, and pressure									
(TAMMS)										
Condensation Particle Counters (CPCs)	Particle concentration (>3 nm and >10 nm)									
Scanning Mobility Particle Sizer (SMPS)	Size distribution of ultrafine particles (3-100 nm)									
High Resolution Time of Flight Aerosol Mass	Chemical composition of aerosol particles									
Spectrometer (HR-ToF-AMS)										
Fast Cloud Droplet Probe (FCDP)	Droplet size distributions (3-50 μm): used for clou									
	screening									
MERRA-2	SO ₂									

Results: Spatial Distribution

- Highest N₃:N₁₀ observed during winter months near the U.S. East Coast
- Elevated N₃:N₁₀ are also found in remote areas like Bermuda

- Highest particle concentrations are near the U.S. East Coast
- Particles represented by "N₃-N₁₀" grow via condensation and coagulation, potentially contributing to the cloud condensation nuclei (CCN) budget

Results: Vertical Distribution

- Gradually increases with altitude.
- Of all ensemble legs, ACT consistently showed highest ratio for all seasons

N₃-N₁₀

 Fairly uniform with altitude but shows the most significant increases above 6 km for Aug-Sep and above 3 km for Bermuda.

Results: Related Environmental Variables

 Winter (Dec-Mar; DJFM) exhibits higher N₃:N₁₀ ratios coincident with lower T/RH/S-Area and higher tracer levels for continental pollution (CO, SO₂)

Seasonal Variation in $\rm N_3:N_{10}$ and Environmental Factors in the Above Cloud Top (ACT) Leg

Results: Related Environmental Variables

- Focusing now just on the Above Cloud Top leg in winter season, the top 80% of N₃:N₁₀ ratios also coincide with:
 - Lower T, RH, S-Area

Variation in $\rm N_3:N_{10}$ and Environmental Factors in Dec-Mar in the ACT Leg

Results: Gradient Boosted Regression Tree Modeling

GBRT: A machine learning model that predicts $N_3:N_{10}$ ratios by addressing non-linear relationships between environmental variables.

(R²/MSE):

- all seasons = 0.44/0.035,
- Dec-Mar = 0.43/0.057;
- May-Jun = 0.44/0.004;
- Berm = 0.77/0.002,
- Aug-Sep = 0.71/0.004.

- GBRT confirms that T is the best predictor, which obviously co-varies with altitude.
- SO₂/SO₄, RH, and aerosol surface area also rank well as predictors

0.5

Case Study Flights

14 June:

- Growing cumulus cloud; Falcon conducted ~21 level legs at different cloud levels!
- African air mass with dust
- High N₃:N₁₀ ratios (>1.5) during the "wall" pattern when Falcon was outside clouds.
- Precipitation acted as an aerosol removal process, promoting NPF
- High actinic flux during outside clouds supported NPF activity.

17 June:

- Clear sky
- N₃:N₁₀ < 1.5
- Influenced by an air mass from North America and the North Atlantic.
- Control case flight in same area as 14 June suggesting clouds may be important for more NPF.

Findings

Seasonal Patterns: Highest in winter, especially above clouds.
Environmental Drivers: High N₃:N₁₀ coincides with low temperature, low relative humidity, and low aerosol surface area.

•High $N_3:N_{10}$ values around Bermuda despite lower pollution levels.

Limitations

Lack of Precursor Data: No direct measurements of key precursors like NH₃, SO₂, and organic vapors.
Regional Limitation: Results focused on the northwest Atlantic.

Namdari, S., et al. (2024). A Comprehensive Analysis of New Particle Formation Across the Northwest Atlantic: Analysis of ACTIVATE Airborne Data. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2024.120831. ACTIVATE Science Team, November 2023 Credit: Xiaojian Zheng

Back Up Slides

N₁₀

	03	Т	Ca	ws	Lat	Lon	Chl	NH4	Org:S O ₄	RH	со	DMS	BCph il	BCpho b	OCphil	OCphob	QV	SO ₂	Org	SO ₄	NO ₃	Alt	S Area	SZA	m/z 42	m/z 79
03	1.00	-0.39	-0.03	0.22	0.22	-0.34	0.05	0.23	0.18	-0.47	0.64	-0.20	0.13	0.21	0.09	0.22	-0.55	0.23	0.28	-0.12	0.21	0.26	0.14	0.20	0.28	0.22
Т	-0.39	1.00	-0.19	-0.19	-0.27	0.20	0.03	0.04	0.07	0.33	-0.43	0.35	0.05	0.04	0.08	0.11	0.87	-0.01	0.35	0.47	-0.22	-0.39	0.20	-0.49	0.34	0.32
Ca	-0.03	-0.19	1.00	0.17	0.05	-0.07	0.04	-0.07	-0.06	0.04	-0.02	-0.01	-0.05	-0.10	-0.05	-0.10	-0.18	-0.14	-0.13	-0.10	-0.04	0.05	-0.05	0.04	-0.12	-0.11
WS	0.22	-0.19	0.17	1.00	0.24	-0.30	0.02	0.02	0.05	-0.16	0.16	0.10	0.06	0.09	0.10	0.14	-0.18	0.04	0.04	-0.10	0.01	0.21	0.04	0.18	0.03	0.03
Lat	0.22	-0.27	0.05	0.24	1.00	-0.43	0.08	0.19	0.12	-0.11	0.35	0.00	0.11	0.37	0.06	0.12	-0.25	0.32	0.16	0.01	0.27	-0.15	0.08	0.20	0.17	0.16
Lon	-0.34	0.20	-0.07	-0.30	-0.43	1.00	-0.07	-0.21	-0.13	0.26	-0.40	0.12	-0.13	-0.31	-0.08	-0.22	0.26	-0.34	-0.21	-0.05	-0.26	0.10	-0.12	-0.25	-0.21	-0.20
Chl	0.05	0.03	0.04	0.02	0.08	-0.07	1.00	0.27	0.10	0.13	0.20	0.07	0.03	0.16	0.01	0.06	0.05	0.15	0.24	0.17	0.27	-0.07	0.26	0.01	0.23	0.22
NH ₄	0.23	0.04	-0.07	0.02	0.19	-0.21	0.27	1.00	0.11	0.13	0.43	0.00	0.08	0.35	0.02	0.14	0.05	0.44	0.56	0.63	0.69	-0.18	0.49	-0.05	0.55	0.46
Org:SO	0.18	0.07	-0.06	0.05	0.12	-0.13	0.10	0.11	1.00	-0.09	0.19	-0.01	0.07	0.23	0.06	0.18	0.00	0.23	0.38	-0.02	0.14	0.02	0.23	-0.04	0.36	0.38
RH	-0.47	0.33	0.04	-0.16	-0.11	0.26	0.13	0.13	-0.09	1.00	-0.19	0.26	-0.10	-0.01	-0.09	-0.09	0.55	-0.14	0.10	0.39	0.00	-0.30	0.13	-0.20	0.10	0.08
СО	0.64	-0.43	-0.02	0.16	0.35	-0.40	0.20	0.43	0.19	-0.19	1.00	-0.16	0.08	0.48	0.01	0.30	-0.50	0.51	0.32	0.00	0.48	-0.23	0.28	0.42	0.30	0.28
DMS	-0.20	0.35	-0.01	0.10	0.00	0.12	0.07	0.00	-0.01	0.26	-0.16	1.00	-0.02	0.02	-0.01	0.00	0.45	-0.01	0.08	0.18	-0.09	-0.25	0.11	-0.20	0.07	0.08
BCphil	0.13	0.05	-0.05	0.06	0.11	-0.13	0.03	0.08	0.07	-0.10	0.08	-0.02	1.00	0.34	0.99	0.37	-0.03	0.14	0.13	0.04	0.07	-0.21	0.09	-0.04	0.13	0.12
BCphob	0.21	0.04	-0.10	0.09	0.37	-0.31	0.16	0.35	0.23	-0.01	0.48	0.02	0.34	1.00	0.27	0.74	0.00	0.67	0.41	0.15	0.38	-0.30	0.36	0.08	0.39	0.40
OCphil	0.09	0.08	-0.05	0.10	0.06	-0.08	0.01	0.02	0.06	-0.09	0.01	-0.01	0.99	0.27	1.00	0.39	0.01	0.07	0.10	0.03	0.01	-0.13	0.07	-0.06	0.10	0.10
OCphob	0.22	0.11	-0.10	0.14	0.12	-0.22	0.06	0.14	0.18	-0.09	0.30	0.00	0.37	0.74	0.39	1.00	0.02	0.40	0.25	0.05	0.14	-0.16	0.27	0.05	0.23	0.23
QV	-0.55	0.87	-0.18	-0.18	-0.25	0.26	0.05	0.05	0.00	0.55	-0.50	0.45	-0.03	0.00	0.01	0.02	1.00	-0.07	0.30	0.54	-0.19	-0.35	0.18	-0.48	0.29	0.27
SO ₂	0.23	-0.01	-0.14	0.04	0.32	-0.34	0.15	0.44	0.23	-0.14	0.51	-0.01	0.14	0.67	0.07	0.40	-0.07	1.00	0.42	0.20	0.51	-0.26	0.34	0.13	0.39	0.40
Org	0.28	0.35	-0.13	0.04	0.16	-0.21	0.24	0.56	0.38	0.10	0.32	0.08	0.13	0.41	0.10	0.25	0.30	0.42	1.00	0.55	0.35	-0.14	0.63	-0.25	0.98	0.91
SO ₄	-0.12	0.47	-0.10	-0.10	0.01	-0.05	0.17	0.63	-0.02	0.39	0.00	0.18	0.04	0.15	0.03	0.05	0.54	0.20	0.55	1.00	0.20	-0.37	0.44	-0.32	0.54	0.43
NO ₃	0.21	-0.22	-0.04	0.01	0.27	-0.26	0.27	0.69	0.14	0.00	0.48	-0.09	0.07	0.38	0.01	0.14	-0.19	0.51	0.35	0.20	1.00	-0.09	0.36	0.16	0.33	0.31
Alt	0.26	-0.39	0.05	0.21	-0.15	0.10	-0.07	-0.18	0.02	-0.30	-0.23	-0.25	-0.21	-0.30	-0.13	-0.16	-0.35	-0.26	-0.14	-0.37	-0.09	1.00	-0.13	-0.07	-0.12	-0.13
S Area	0.14	0.20	-0.05	0.04	0.08	-0.12	0.26	0.49	0.23	0.13	0.28	0.11	0.09	0.36	0.07	0.27	0.18	0.34	0.63	0.44	0.36	-0.13	1.00	-0.09	0.61	0.57
SZA	0.20	-0.49	0.04	0.18	0.20	-0.25	0.01	-0.05	-0.04	-0.20	0.42	-0.20	-0.04	0.08	-0.06	0.05	-0.48	0.13	-0.25	-0.32	0.16	-0.07	-0.09	1.00	-0.25	-0.22
m/z 42	0.28	0.34	-0.12	0.03	0.17	-0.21	0.23	0.55	0.36	0.10	0.30	0.07	0.13	0.39	0.10	0.23	0.29	0.39	0.98	0.54	0.33	-0.12	0.61	-0.25	1.00	0.90
m/z 79	0.22	0.32	-0.11	0.03	0.16	-0.20	0.22	0.46	0.38	0.08	0.28	0.08	0.12	0.40	0.10	0.23	0.27	0.40	0.91	0.43	0.31	-0.13	0.57	-0.22	0.90	1.00

SMPS Size Distribution:

ACTIVATE

14 June: Higher concentrations of 3-10 nm particles with increasing altitude.

17 June: Elevated particle concentrations at 5-9 km, contrasting with lower altitudes.

Median number size distributions from SMPS for different altitude bins