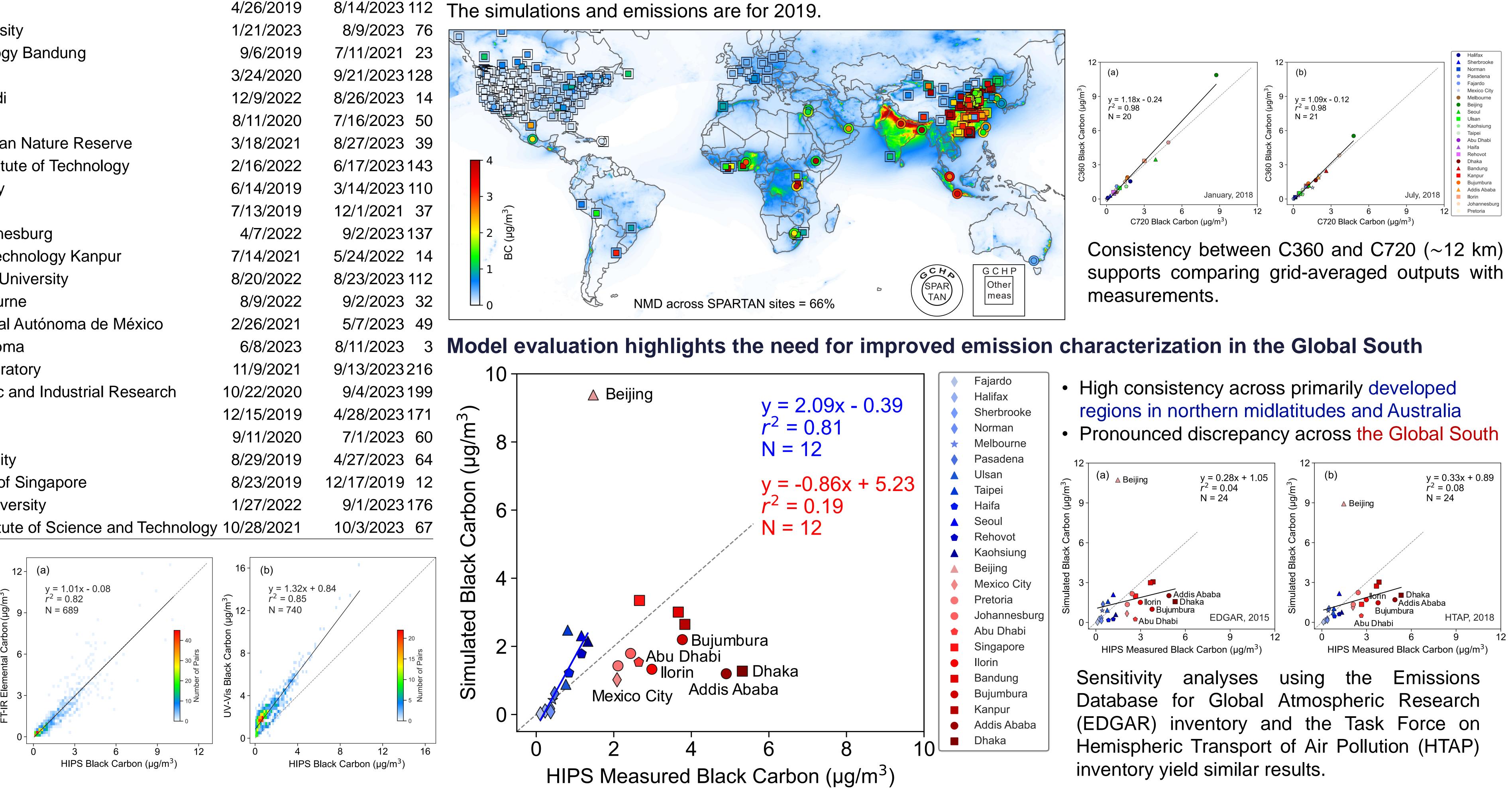


Global characterization of black carbon (BC) is essential but high uncertainty persists in emission inventories and simulations


Sample Date

Start Date

Surface PARTiculate mAtter Network (SPARTAN) offers long-term consistent BC measurements across globally distributed sites

Site	Host Institute
Abu Dhabi	Masdar Institute
Addis Ababa	Addis Ababa University
Bandung	Institute of Technology Bandung
Beijing	Tsinghua University
Bujumbura	University of Burundi
Dhaka	Dhaka University
Fajardo	Cabezas de San Juan Nature Reserve
Haifa	Technion Israel Institute of Technology
Halifax	Dalhousie University
llorin	Ilorin University
Johannesburg	JUniversity of Johannesburg
Kanpur	Indian Institute of Technology Kanpur
Kaohsiung	Kaohsiung Medical University
Melbourne	University of Melbourne
Mexico City	Universidad Nacional Autónoma de México
Norman	University of Oklahoma
Pasadena	Jet Propulsion Laboratory
Pretoria	Council for Scientific and Industrial Research
Rehovot	Weizmann Institute
Seoul	Yonsei University
Sherbrooke	Sherbrooke University
Singapore	National University of Singapore
Taipei	National Taiwan University
Ulsan	Ulsan National Institute of Science and Technol
•••••••	

- Hybrid Integrating Plate/Sphere (HIPS)² with a mass absorption cross section (MAC) of 10 m²/g \widehat{T}_{E} at 633 nm
- Fourier Transform Infrared Spectroscopy (FT-IR)³
- UV-Visible Spectrophotometer (UV-Vis)⁴
- Fixed and varying MAC values complicate intercomparison of measurements

Summary

Black Carbon Emissions Underestimated in the Global South as Revealed by Globally Distributed Measurements

Yuxuan Ren¹, Randall V. Martin¹, Christopher R. Oxford¹, Dandan Zhang¹, Xuan Liu¹, Haihui Zhu¹, Joshin Kumar¹ Ann M. Dillner², Rajan K. Chakrabarty¹, Sina Hasheminassab³, David Diner³, Valerie Viteri¹, SPARTAN Team ¹Washington University in St. Louis, ²University of California Davis, ³Jet Propulsion Laboratory, California Institute of Technology

• BC affects climate forcing (absorbs solar radiation, influences cloud processes, reduces snow albedo after deposition) and human health (cardiovascular and respiratory morbidity and mortality, cancer). Estimates of global anthropogenic BC emissions in bottom-up inventories are highly uncertain due to data paucity, particularly for residential and industrial sectors in developing regions¹. • Considerable inconsistencies in model-measurement comparisons have been observed in developed regions, while model evaluation in the Global South remains limited.

High-resolution GEOS-Chem modeling capability enables better connections between global emissions and localized point measurements

Most Recent N We use the GEOS-Chem chemical transport model in its high-performance implementation (GCHP) version 13.4.1 at cubed-sphere resolutions of C360 (~25 km) using the Community Emissions Data System (CEDS) emission inventory. The simulations and emissions are for 2019.

We apply a novel dataset of globally distributed BC measurements from SPARTAN and other available measurements to evaluate widely used BC emission inventories. High-resolution GCHP simulations are used to relate BC emissions to ambient concentrations for comparison with measurements. Results using CEDS inventory indicate high model-measurement consistency across primarily developed regions ($r^2 = 0.81$) but pronounced discrepancy across the Global South ($r^2 = 0.19$). These findings motivate renewed attention to the challenging task of characterizing BC emissions from developing countries.

[1] Bond et al., 2013. J. Geophys. Res., 118, 5380–5552. [2] White et al., 2016. AS&T, 50, 984–1002. [3] Dillner and Takahama, 2019. Atmos. Meas. Tech., 8, 4013–4023. [4] Pandey et al., 2019. Atmos. Meas. Tech., 12, 1365–1373.

Acknowledgments: This work was supported by NASA, NOAA, NSF, and the Clean Air Fund. ren.yuxuan@wustl.edu

