

Kip Carrico, Ryan Himes, S.Gulick

News Media Images South Fork/Salt Fires Near Ruidoso, NM 2024 ~25K acres

Gorkowski, J. Lee, A. Josephson,

J. Reisner, M. Dubey

October 2024

Southwest US PM_{2.5} Air Quality

PM_{2.5} is typically mixture of organic carbon, elemental carbon, salt species, soil dust species

Bosque del Apache IMPROVE station (2000-2014 data)

- Peak in dust + smoke in April-July
- Winter secondary peak in POM, NH₄NO₃, EC
- Summer peak in (NH₄)₂SO₄

Biomass Smoke Exposure: Not just the West (NOAA)

Cumulative Smoke Distribution (CONUS) 2006

Cumulative Smoke Distribution (CONUS) 2024

Parameters of Interest

Parameter	Description	Units	Techniques	Notes & Relevance					
$\sigma_{ m abs}$	These two integrated over the column give aerosol optical depth								
$\sigma_{\rm scat}$									
Å,b	Ångtröm exponent, backscatter fraction		Wavelength dependence and direction of	Determines radiation reflected to space					
$\overbrace{\circ}$ These are key variables that $\frac{1}{2}$									
N _{to}	parameterize aerosol effects								
D_g	in climate & visibility models								
σ_g	deviation		SMPS)	ibution					
f(RH) gRH)	Hygroscopic growth		Controlled RH nephelometry, H- CAPS PMssa	Aerosols water uptake key to radiative effects					
MCE	Combustion Efficiency		$CO \& CO_2$ Instruments	$\frac{\Delta CO_2}{\Delta CO_2 + \Delta CO}$					

Purple Air Sensor and Microaethalemeter

- Cost-effective sensor (~\$300) and light weight (~1kg)
- Utilizes two, redundant PlanTower PMS5003 sensors
 - Measures $\text{PM}_{10},\,\text{PM}_{2.5},\,\text{and}\,\,\text{PM}_{1.0}\,[\mu\text{g}/\text{m}^3]$
 - Records T, P, and RH from other sensors
- Light scattering based sensor
 - 657nm light source
- Corrections for moderately aged smoke have been constructed (Holder et al., 2020)
 - Over measures low concentrations
 - Non-linear transition
 - Under measures high concentrations
- Multiwavelength UV-IR aerosol light absorption from BC concentrations
- Dual spot operation for minimization of nonidealities

Laboratory Experiments: Low-Cost Sensors vs. Benchtop

FEM Beta Attenuation

Light Scattering and Backup Filter

Sampler

Lab Validation Experimental Iterations

Real Laboratory

Need More Effort to Compare to FEMs, FRMS with Non-volatile Aerosol

BAM 1020 PM_{2.5} [µg/m³]

Dry polydisperse Ammonium Sulfate with D_g ~ 40-50 nm

Exp. #	ARA	BAM	PDR Filt.	PDR Opt.	PA B51C AVG	PA C983 AVG
AS 500	410.84	434.5	614.81	468.7	146.52	160.25
082524 AS	27.03	11.25	12.35	19	4.23	5.08
082624 AS	156.73	155.39	207.73	266.73	93.84	102.26
082824 AS	191.63	208.12	271.11	256.66	73.09	78.15
090124 AS	476.73	552.05	728.96	587.35	167.53	180.9

Can we take the raw data from the PurpleAir and get a reasonable [PM_{2 5}]?....

.....maybe if the aerosol of interest is calibrated to (size, refractive index)

Ambient Konza Prairie Fires Light Absorption (Manhattan, KS)

Drone Measurements of Fuel Spill Burn New Mexico Fire Training Academy

05/18/2023 SFTC FLAMS Burn - BC Fraction (8 sec. avg.)

For small (Dg,n <100nm) and very dark smoke emissions the PurpleAir sensors miss a significant fraction of the PM2.5 mass concentration

Vehicular Fire

LPG Tank Release

iesel Fuel Spill

New Mexico State Fire Training Center

Mock Hotel Room

Smoke Building

Diesel Fuel Spill Burn Light Absorption New Mexico Fire Training Academy

Building Burn Light Absorption New Mexico Fire Training Academy

Typical Fuel: Wood pallets on a pool of diesel fuel

Hotel Room Burn Light Absorption New Mexico Fire Training Academy

Conclusions

- 1) Field measurements are showing **consistency** with what we observed in the lab (Flaming/smoldering, BC vs. BrC)
- 2) Combustion **temperature/phase** plays a key role for aerosol physical properties
- 3) Biomass burning aerosol properties—an important climate component are diverse, variable and **fuel/phase specific**
- 4) Sensors such as PA strongly benefit from an **aerosol-specific ground truth**
- 5) Pursuing further **field measurements** and **sensor validation studies** (urban & wildland fuels)

Acknowledgments

- This material is part based upon work supported by the National Science Foundation under Grant No.1832813.
- The Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP) supported this research. The New Mexico Consortium is gratefully acknowledged for financial support in this research. LANL support includes DOE Office of Science Biological and Environmental Research Atmospheric System Research Program.

