Strongly Absorbing Aerosol Refractive Indices in the Highly Polluted Indo-Gangetic Plains

Taveen S. Kapoor^{1,2}, Harish C. Phuleria², Benjamin Sumlin¹, Nishit Shetty¹, Gupta Anurag², Mahak Bansal³, Sandeep Duhan⁴, Shahzar Khan³, Jitendra Laura⁴, Pooja Manwani², Rajan K. Chakrabarty^{1,*}, Chandra Venkataraman^{2,*}

¹ Washington University in St. Louis
 ² Indian Institute of Technology Bombay
 ³ Indian Institute of Technology Delhi

⁴ Maharshi Dayanand University Rohtak

Kapoor et al., 2023; JGR: Atmospheres

Uncertainties in Carbonceous Aerosol Radiative Forcing

IPCC, AR6 (2021)

Underestimation of Aerosol Optical Depth over India

Aerosol Optical Property Calculations in Climate Models

Aerosol Type	BC	
Refractive Index (λ=550 nm)	1.95+0.79 <i>i</i>	
AAE	1	
SAE	1.5	
CMD	150	
GSD	1.5	

Refractive Index, m = n + k iScattering Absorption

Effective refractive index - optically representative - not associated with any mixing scheme.

Indian COALESCE Network Sites

- Indian National Carbonaceous Program CarbOnaceous AerosoL Emissions, Source apportionment and ClimatE Impacts, NCAP-COALESCE – improve understanding of carbonaceous aerosols over Indian region
- Indo-Gangetic plains experiences haze events during post-monsoon and winter months
- Limited understanding of optical properties in the region and relationships with aerosol chemical properties in the region
- Especially intrinsic aerosol optical properties (SSA, AAE, refractive index, etc.)

Measurements – site and instrumentation

Time-integrated measurements (daily)

- EC/OC concentrations IMPROVE-A quartz
- PM_{2.5} gravimetric teflon

Measurements from 25 Jan – 24 Feb, 2020

Inverted Refractive Index using:

- Absorption and scattering coefficients
- Particle number size distribution

Measured Aerosol Optical Properties

- Diurnal variations
 - Extrinsic properties strong variation
 - Intrinsic properties little variation
- AAE_{370/660}~1.5 some BrC

$$AAE = -\frac{\log\left(\frac{b_{abs,\lambda 1}}{b_{abs,\lambda 2}}\right)}{\log\left(\frac{\lambda 1}{\lambda 2}\right)}$$

SSA~0.7 - warming aerosols
 found spectrally invariant

$$SSA_{\lambda} = -\frac{b_{abs,\lambda}}{b_{scat,\lambda}}$$

Aerosol Absorption Refractive Index

- RI not varying with wavelength – also reported by Zhang et al. (2013) at China
- No appreciable diurnal variation – also reported by Nandan et al. (2021) at India

Refractive Index calculated by optical closure, PyMieScatt (Sumlin et al., 2018)

Comparison of refractive index with literature

- Ambient imag-RI b/w BC and BrC
- Other locations: France, Germany, China, and India

Carbonaceous aerosol absorption and concentrations

- EC/OC of 0.5 little variation
- OC dominated by OC3 & OC4 – low-volatility – strongly absorbing [Saleh et al., 2016; Chakrabarty et al., 2023]
- MAC_{OC,550} ~ 1.9 m² g⁻¹ strongly absorbing BrC [Saleh, 2020]
- Good correlation b/w OC & EC, and b_{abs,BrC} and b_{abs,BC} – BrC likely from combustion sources

Brown carbon absorption across India

Brown carbon absorption is significant and needs inclusion in climate models!

Measured Spectral Aerosol Absorption across 9 COALESCE sites.

BrC absorption calculated using a Mie-theory based optimization method [Kapoor et al., 2022]

Climate Models Underestimate Intrinsic and Extrinsic Absorption

Summary and conclusion

- Measured aerosol optical and micro-physcial properties in the Indo-Gangetic region
- Measured aerosol has SSA of 0.7, indicative of very warming aerosol
- Measured imaginary-RI
 - 0.1 (0.08-0.15, 25th-75th percentile)
 - Invariant in the visible region
 - No diurnal variation
 - Upper range of previous measurements

- Low volatility OC dominate BrC absorption with BC like behaviour [Saleh et al., 2016] need to be included in climate models
- BrC and OC likely from combustion sources
- Measured Intrinsic properties useful to further constrain and validate climate model simulations

Acknowledgements

- WashU-IIT Bombay Joint Research
 and Education Initiative
- NCAP-COALESCE project, Ministry of Environment Forests and Climate Change, Govt. of India

Thank You! Questions? Contact: k.taveen@wustl.edu

Literature review – methods to estimate BrC absorption

- Organic carbon species that absorb radiation brown carbon
- OC was treated as purely scattering properties still uncertain
- BrC absorbs preferentially in near-UV
- Extrapolating BC absorption:
 - Assumptions, AAE = 1 [Olson et al., 2015; Tian et al., 2019; Zhang et al., 2018; Zhu et al, 2017, Chen et al., 2015]
 - Sophisticated instrumentation and Mie theory [Wang et al., 2016; Wang et al., 2018]
- Study reported constant AAE_{ratio} (AAE_{UV}/AAE_{IR}) [Wang et al, 2018]

Developed method to calculate BrC absorption

- Mie theory core shell
- LUT with BC absorption properties
- Literature derived inputs
 - Fraction-BC particles
 - BC size distributions
 - o BC RI
 - Coating RI
- Optically representative BC distribution

- AAE_{ratio}

- BC CMD
- Coating factor

Overall ~32% uncertainty

Measurements:

- Multi-wavelength absorption (here Aethalometer)
- Particle number counts (here SMPS, CPC)

[Kapoor et al, 2022]

Taveen Singh Kapoor, Center for Aerososl Science and Engineering, Washington University in St. Louis

chel

core

New particle formation

Correlation coefficient plot

Possible dust contributions?

Diurnal Variation of Particle Number Size Distribution

